Neighborly bushes and the Radon-Nikodým property for Banach spaces
نویسندگان
چکیده
منابع مشابه
The Gaussian Radon Transform for Banach Spaces
The classical Radon transform can be thought of as a way to obtain the density of an n-dimensional object from its (n− 1)-dimensional sections in di erent directions. A generalization of this transform to in nite-dimensional spaces has the potential to allow one to obtain a function de ned on an in nite-dimensional space from its conditional expectations. We work within a standard framework in ...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملAn Analogue of the Radon-nikodym Property for Non-locally Convex Quasi-banach Spaces
where g:(0, 1)-»X is an essentially bounded strongly measurable function. In this paper we examine analogues of the Radon-Nikodym Property for quasiBanach spaces. If 0 < p < 1, there are several possible ways of defining "differentiable" operators on Lp, but they inevitably lead to the conclusion that the only differentiable operator is zero. For example, a differentiable operator on L\ has the...
متن کاملBanach Spaces Having the Radon-nikodỳm Property and Numerical Index 1
Let X be a Banach space with the Radon-Nikodỳm property. Then, the following are equivalent. (i) X has numerical index 1. (ii) |x∗∗(x∗)| = 1 for all x∗ ∈ ex(BX∗ ) and x∗∗ ∈ ex(BX∗∗ ). (iii) X is an almost-CL-space. (iv) There are a compact Hausdorff space K and a linear isometry J : X → C(K) such that |x∗∗(J∗δs)| = 1 for all s ∈ K and x∗∗ ∈ ex(BX∗∗ ). If X is a real space, the above conditions ...
متن کاملConvergent Martingales of Operators and the Radon Nikodým Property in Banach Spaces
We extend Troitsky’s ideas on measure-free martingales on Banach lattices to martingales of operators acting between a Banach lattice and a Banach space. We prove that each norm bounded martingale of cone absolutely summing (c.a.s.) operators (also known as 1-concave operators), from a Banach lattice E to a Banach space Y , can be generated by a single c.a.s. operator. As a consequence, we obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1980
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1980.87.157